93 research outputs found

    Whole-Page Optimization and Submodular Welfare Maximization with Online Bidders

    Get PDF
    In the context of online ad serving, display ads may appear on different types of webpages, where each page includes several ad slots and therefore multiple ads can be shown on each page. The set of ads that can be assigned to ad slots of the same page needs to satisfy various prespecified constraints including exclusion constraints, diversity constraints, and the like. Upon arrival of a user, the ad serving system needs to allocate a set of ads to the current webpage respecting these per-page allocation constraints. Previous slot-based settings ignore the important concept of a page and may lead to highly suboptimal results in general. In this article, motivated by these applications in display advertising and inspired by the submodular welfare maximization problem with online bidders, we study a general class of page-based ad allocation problems, present the first (tight) constant-factor approximation algorithms for these problems, and confirm the performance of our algorithms experimentally on real-world datasets. A key technical ingredient of our results is a novel primal-dual analysis for handling free disposal, which updates dual variables using a “level function” instead of a single level and unifies with previous analyses of related problems. This new analysis method allows us to handle arbitrarily complicated allocation constraints for each page. Our main result is an algorithm that achieves a 1 &minus frac 1 e &minus o(1)-competitive ratio. Moreover, our experiments on real-world datasets show significant improvements of our page-based algorithms compared to the slot-based algorithms. Finally, we observe that our problem is closely related to the submodular welfare maximization (SWM) problem. In particular, we introduce a variant of the SWM problem with online bidders and show how to solve this problem using our algorithm for whole-page optimization.postprin

    Buyback Problem - Approximate matroid intersection with cancellation costs

    Full text link
    In the buyback problem, an algorithm observes a sequence of bids and must decide whether to accept each bid at the moment it arrives, subject to some constraints on the set of accepted bids. Decisions to reject bids are irrevocable, whereas decisions to accept bids may be canceled at a cost that is a fixed fraction of the bid value. Previous to our work, deterministic and randomized algorithms were known when the constraint is a matroid constraint. We extend this and give a deterministic algorithm for the case when the constraint is an intersection of kk matroid constraints. We further prove a matching lower bound on the competitive ratio for this problem and extend our results to arbitrary downward closed set systems. This problem has applications to banner advertisement, semi-streaming, routing, load balancing and other problems where preemption or cancellation of previous allocations is allowed

    Online Independent Set Beyond the Worst-Case: Secretaries, Prophets, and Periods

    Full text link
    We investigate online algorithms for maximum (weight) independent set on graph classes with bounded inductive independence number like, e.g., interval and disk graphs with applications to, e.g., task scheduling and spectrum allocation. In the online setting, it is assumed that nodes of an unknown graph arrive one by one over time. An online algorithm has to decide whether an arriving node should be included into the independent set. Unfortunately, this natural and practically relevant online problem cannot be studied in a meaningful way within a classical competitive analysis as the competitive ratio on worst-case input sequences is lower bounded by Ω(n)\Omega(n). As a worst-case analysis is pointless, we study online independent set in a stochastic analysis. Instead of focussing on a particular stochastic input model, we present a generic sampling approach that enables us to devise online algorithms achieving performance guarantees for a variety of input models. In particular, our analysis covers stochastic input models like the secretary model, in which an adversarial graph is presented in random order, and the prophet-inequality model, in which a randomly generated graph is presented in adversarial order. Our sampling approach bridges thus between stochastic input models of quite different nature. In addition, we show that our approach can be applied to a practically motivated admission control setting. Our sampling approach yields an online algorithm for maximum independent set with competitive ratio O(ρ2)O(\rho^2) with respect to all of the mentioned stochastic input models. for graph classes with inductive independence number ρ\rho. The approach can be extended towards maximum-weight independent set by losing only a factor of O(logn)O(\log n) in the competitive ratio with nn denoting the (expected) number of nodes

    Advances on Matroid Secretary Problems: Free Order Model and Laminar Case

    Get PDF
    The most well-known conjecture in the context of matroid secretary problems claims the existence of a constant-factor approximation applicable to any matroid. Whereas this conjecture remains open, modified forms of it were shown to be true, when assuming that the assignment of weights to the secretaries is not adversarial but uniformly random (Soto [SODA 2011], Oveis Gharan and Vondr\'ak [ESA 2011]). However, so far, there was no variant of the matroid secretary problem with adversarial weight assignment for which a constant-factor approximation was found. We address this point by presenting a 9-approximation for the \emph{free order model}, a model suggested shortly after the introduction of the matroid secretary problem, and for which no constant-factor approximation was known so far. The free order model is a relaxed version of the original matroid secretary problem, with the only difference that one can choose the order in which secretaries are interviewed. Furthermore, we consider the classical matroid secretary problem for the special case of laminar matroids. Only recently, a constant-factor approximation has been found for this case, using a clever but rather involved method and analysis (Im and Wang, [SODA 2011]) that leads to a 16000/3-approximation. This is arguably the most involved special case of the matroid secretary problem for which a constant-factor approximation is known. We present a considerably simpler and stronger 33e14.123\sqrt{3}e\approx 14.12-approximation, based on reducing the problem to a matroid secretary problem on a partition matroid

    Packing Returning Secretaries

    Full text link
    We study online secretary problems with returns in combinatorial packing domains with nn candidates that arrive sequentially over time in random order. The goal is to accept a feasible packing of candidates of maximum total value. In the first variant, each candidate arrives exactly twice. All 2n2n arrivals occur in random order. We propose a simple 0.5-competitive algorithm that can be combined with arbitrary approximation algorithms for the packing domain, even when the total value of candidates is a subadditive function. For bipartite matching, we obtain an algorithm with competitive ratio at least 0.5721o(1)0.5721 - o(1) for growing nn, and an algorithm with ratio at least 0.54590.5459 for all n1n \ge 1. We extend all algorithms and ratios to k2k \ge 2 arrivals per candidate. In the second variant, there is a pool of undecided candidates. In each round, a random candidate from the pool arrives. Upon arrival a candidate can be either decided (accept/reject) or postponed (returned into the pool). We mainly focus on minimizing the expected number of postponements when computing an optimal solution. An expected number of Θ(nlogn)\Theta(n \log n) is always sufficient. For matroids, we show that the expected number can be reduced to O(rlog(n/r))O(r \log (n/r)), where rn/2r \le n/2 is the minimum of the ranks of matroid and dual matroid. For bipartite matching, we show a bound of O(rlogn)O(r \log n), where rr is the size of the optimum matching. For general packing, we show a lower bound of Ω(nloglogn)\Omega(n \log \log n), even when the size of the optimum is r=Θ(logn)r = \Theta(\log n).Comment: 23 pages, 5 figure

    Active Re-identification Attacks on Periodically Released Dynamic Social Graphs

    Full text link
    Active re-identification attacks pose a serious threat to privacy-preserving social graph publication. Active attackers create fake accounts to build structural patterns in social graphs which can be used to re-identify legitimate users on published anonymised graphs, even without additional background knowledge. So far, this type of attacks has only been studied in the scenario where the inherently dynamic social graph is published once. In this paper, we present the first active re-identification attack in the more realistic scenario where a dynamic social graph is periodically published. The new attack leverages tempo-structural patterns for strengthening the adversary. Through a comprehensive set of experiments on real-life and synthetic dynamic social graphs, we show that our new attack substantially outperforms the most effective static active attack in the literature by increasing the success probability of re-identification by more than two times and efficiency by almost 10 times. Moreover, unlike the static attack, our new attack is able to remain at the same level of effectiveness and efficiency as the publication process advances. We conduct a study on the factors that may thwart our new attack, which can help design graph anonymising methods with a better balance between privacy and utility

    Building data warehouses in the era of big data: an approach for scalable and flexible big data warehouses

    Get PDF
    During the last few years, the concept of Big Data Warehousing gained significant attention from the scientific community, highlighting the need to make design changes to the traditional Data Warehouse (DW) due to its limitations, in order to achieve new characteristics relevant in Big Data contexts (e.g., scalability on commodity hardware, real-time performance, and flexible storage). The state-of-the-art in Big Data Warehousing reflects the young age of the concept, as well as ambiguity and the lack of common approaches to build Big Data Warehouses (BDWs). Consequently, an approach to design and implement these complex systems is of major relevance to business analytics researchers and practitioners. In this tutorial, the design and implementation of BDWs is targeted, in order to present a general approach that researchers and practitioners can follow in their Big Data Warehousing projects, exploring several demonstration cases focusing on system design and data modelling examples in areas like smart cities, retail, finance, manufacturing, among others

    Solving Multi-choice Secretary Problem in Parallel: An Optimal Observation-Selection Protocol

    Full text link
    The classical secretary problem investigates the question of how to hire the best secretary from nn candidates who come in a uniformly random order. In this work we investigate a parallel generalizations of this problem introduced by Feldman and Tennenholtz [14]. We call it shared QQ-queue JJ-choice KK-best secretary problem. In this problem, nn candidates are evenly distributed into QQ queues, and instead of hiring the best one, the employer wants to hire JJ candidates among the best KK persons. The JJ quotas are shared by all queues. This problem is a generalized version of JJ-choice KK-best problem which has been extensively studied and it has more practical value as it characterizes the parallel situation. Although a few of works have been done about this generalization, to the best of our knowledge, no optimal deterministic protocol was known with general QQ queues. In this paper, we provide an optimal deterministic protocol for this problem. The protocol is in the same style of the 1e1\over e-solution for the classical secretary problem, but with multiple phases and adaptive criteria. Our protocol is very simple and efficient, and we show that several generalizations, such as the fractional JJ-choice KK-best secretary problem and exclusive QQ-queue JJ-choice KK-best secretary problem, can be solved optimally by this protocol with slight modification and the latter one solves an open problem of Feldman and Tennenholtz [14]. In addition, we provide theoretical analysis for two typical cases, including the 1-queue 1-choice KK-best problem and the shared 2-queue 2-choice 2-best problem. For the former, we prove a lower bound 1O(ln2KK2)1-O(\frac{\ln^2K}{K^2}) of the competitive ratio. For the latter, we show the optimal competitive ratio is 0.372\approx0.372 while previously the best known result is 0.356 [14].Comment: This work is accepted by ISAAC 201

    Selênio como suplemento para bovinos intoxicados cronicamente por Pteridium sp. no Espirito Santo. 2017.

    Get PDF
    Pteridiumsp.(samambaia) é uma planta responsável por diversos quadros de intoxicação em animais e seres humanos. Em bovinos, um dos quadros comuns na região sul do Espírito Santo é a hematúria enzoótica bovina (HEB) que não possui tratamento. Assim, o objetivo do presente trabalho foi determinar os efeitos do selênio associado a vitamina E como suplemento em animais intoxicados cronicamente pelo Pteridium sp. Foram selecionados 21 animais intoxicados cronicamente pela planta e com HEB. Os animais foram examinados clinicamente e foi realizada a coleta da urina para a confirmação da hematúria. O delineamento experimental foi feito em quatro grupos divididos ao acaso (controle soro fisiológico; tratamento 1 0,05 mg/Kg do suplemento;tratamento20,10mg/Kgdosuplemento;tratamento30,20mg/Kgdo suplemento). Foi feita a suplementação parenteral, via intramuscular, uma vez por semana, durante 13 semanas. Quinzenalmente os animais foram avaliados clinicamente e foram coletadas amostras de sangue para dosagem do selêniosérico. A análise de selênio foi feita nos momentos inicial, antes da suplementação com selênio (M0), após quatro semanas de tratamento (M4), após oito semanas (M8) e após 12 semanas (M12), pelo método de espectrofotometria de absorção atômica. Utilizou-seaanálisedevariância(ANOVA)seguidadotestedeTukeya5%.Verificou-se que houve maior ganho de peso dos animais tratados com selênio em relação ao grupocontrolee,também,entreosgrupos.Aintensidadedahematúriareduziuapartir da sexta semana e houve diferença significativa entre os grupos tratados e o grupo controle, assim como entre os grupos. Houve diferença significativa da concentração sérica de selênio entre os tratamentos. Assim, conclui-se que o selênio associado a vitaminaEcomosuplementoparabovinosintoxicadoscronicamenteporPteridiumsp. no Espirito Santo com quadro de HEB teve efeito dose dependente sobre a melhora doquadroclínicocausandoreduçãodaintensidadedehematúriaeaumentodoganho de pes
    corecore